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Abstract. Land surface models are excellent tools for study-
ing how climate change and land use affect surface hydrol-
ogy. However, in order to assess the impacts of Earth pro-
cesses on river flows, simulated changes in runoff need to be
routed through the landscape. In this technical note, we de-
scribe the integration of the Ecosystem Demography (ED2)
model with a hydrological routing scheme. The purpose of
the study was to create a tool capable of incorporating to hy-
drological predictions the terrestrial ecosystem responses to
climate, carbon dioxide, and land-use change, as simulated
with terrestrial biosphere models. The resulting ED2+R
model calculates the lateral routing of surface and subsur-
face runoff resulting from the terrestrial biosphere models’
vertical water balance in order to determine spatiotemporal
patterns of river flows within the simulated region. We eval-
uated the ED2+R model in the Tapajés, a 476 674 km? river
basin in the southeastern Amazon, Brazil. The results showed
that the integration of ED2 with the lateral routing scheme re-
sults in an adequate representation (Nash—Sutcliffe efficiency
up to 0.76, Kling—Gupta efficiency up to 0.86, Pearson’s R
up to 0.88, and volume ratio up to 1.06) of daily to decadal
river flow dynamics in the Tapajés. These results are a con-
sistent step forward with respect to the “no river representa-

tion” common among terrestrial biosphere models, such as
the initial version of ED2.

1 Introduction

Understanding the impacts of deforestation (e.g., Lejeune
et al., 2015; Medvigy et al., 2011; Andréassian, 2004) and
climate change (e.g., Jiménez-Cisneros et al., 2014) on the
Earth’s water cycle has been a topic of substantial interest in
recent years given its potential implications for ecosystems
and society (e.g., Wohl et al., 2012; Brown et al., 2005).
Analyses of climate change impacts on the Earth’s water
cycle increasingly use terrestrial biosphere models, which
are capable of estimating changes in the vertical water bal-
ance as a function of climate forcing and/or land-use-induced
changes in canopy structure and composition (Zulkafli et al.,
2013). Terrestrial biosphere models actively used for hydro-
logical and Earth system sciences include the Joint UK Land
Environment Simulator (JULES) (Best et al., 2011; Clark et
al., 2011), the Community Land Model (CLM) (Lawrence et
al., 2011; Oleson et al., 2010), the Lund—Potsdam—Jena (LPJ)
land model (Gerten et al., 2004; Sitch et al., 2003), the Max

Published by Copernicus Publications on behalf of the European Geosciences Union.



4630

Planck Institute MPI-JSBACH model (Vamborg et al., 2011;
Raddatz et al., 2007), and the Integrated Biosphere Simulator
(IBIS) (Kucharik et al., 2000).

Initial formulations of the hydrological processes within
terrestrial biosphere models were based on simple “bucket”
model formulations (Cox et al., 1999 after Carson, 1982).
Moisture within each climatological grid cell of the domain
was simulated in a single below-ground pool in which sur-
face temperature and specific soil moisture factors deter-
mined evaporation, while runoff was equal to the bucket
overflow (Cox et al., 1999; Carson, 1982). Recently, the hy-
drologic schemes within terrestrial biosphere models have
become increasingly sophisticated. In the most recent gen-
eration of land surface models, water fluxes in and out of
the soil column are vertically resolved and take into ac-
count feedback from the different components, for instance,
through an explicit formulation of the soil-plant—atmosphere
continuum. This enables the models to provide a detailed rep-
resentation of the interactions between evapotranspiration,
soil moisture, and runoff (Clark et al., 2015).

To couple the calculation of the one-dimensional water
balance with the estimation of daily river flows, it is nec-
essary to simulate multiple hydrological dynamics involved
in the lateral flow propagation through the landscape, ide-
ally including the most complex hydraulic features of flood-
plains, lakes, and wetlands (Yamazaki et al., 2011). The first
step towards representing the finer-scale hydrodynamic pro-
cesses responsible for patterns in river gauge observations is
to consider the topographic and geomorphological features
that control water flow (Arora et al., 1999). The coarse spatial
resolution of regional land surface models, imposed by com-
putational constraints, does not allow for proper simulation
of the complex hydrological dynamics determined by fine-
scale topography in river channels and floodplains (Yamazaki
et al., 2011; Kauffeldt et al., 2016). However, the combi-
nation of the terrestrial models with routing schemes can
be used to simulate the implications of global and regional
environmental changes for flood/drought forecasting, water
resources planning and management, and infrastructure de-
velopment (Andersson et al., 2015). Consequently, several
terrestrial biosphere models have been integrated with rout-
ing schemes. For example, JULES has been integrated with
the Total Runoff Integrating Pathways (TRIP) to evaluate the
accuracy of its estimates of annual streamflow (Oki et al.,
1999). This integrated model was used to investigate the sta-
tus of the global water budget (Oki et al., 2001). Rost et
al. (2008) also used a modeling framework composed of the
global dynamic vegetation model, LPJ, and a simple water
balance model to quantify the global consumption of water
for rain-fed and irrigated agriculture. An offline coupling of
the dynamic vegetation model, ISIS, and HYDRA — which
simulates the lateral transport of water through rivers, lakes,
and wetlands — was proposed in Coe et al. (2008) with the
purpose of reproducing linkages between land use, hydrol-
ogy, and climate. Moreover, Liang et al. (1994) developed
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and tested the coupling of the well-known VIC model with
a general circulation model (GCM) to improve the GCM’s
ability to capture the interactions between surface hydrology
and atmosphere. For the same purpose, the MPI hydrological
discharge model was validated with NCEP reanalysis and pa-
rameterized for simulating the river routing for climate anal-
ysis at global scale (Hagemann and Gates, 2001; Hagemann
and Dumenil, 1997). Several routing schemes have been de-
signed to date, including normal depth, modified pulse, sim-
ple Muskingum, and Muskingum—Cunge (USACE, 1991).
Most notably, the semi-distributed kinematic wave-routing
Muskingum—Cunge method has been recognized for its sta-
bility over different spatial and temporal modeling resolu-
tions (USACE, 1991; Miller and Cunge, 1975; Cunge, 1969),
and has been adopted by the most widely used regional-scale
hydrological models, such as VIC, SWAT, and MGB-IPH.

Recent studies have investigated the influence of land use
on regional patterns of rainfall and biosphere temperature
(Ostberg et al., 2015; Bahn et al., 2014; Pearson et al., 2013).
These studies tracked how the occurrence of conversion of
land from its natural state over the same time frame as ob-
served fluctuations of rainfall and air temperature occurred —
aspects fully analyzed by terrestrial biosphere models (Hurtt
et al., 2006; Goldewijk, 2001; Ramankutty and Foley, 1999).
However, these models assumed that global and regional
changes in the biosphere were a result of dynamics of vege-
tation in a collection of landscapes given by forests, deserts,
and farmland only. Inland surface waters (e.g., rivers, lakes,
and wetlands) were not considered as an interactive compo-
nent of the biosphere and hence the climate system (Cole et
al., 2007).

The Ecosystem Demography (ED2) is a terrestrial bio-
sphere model that simulates the coupled water, carbon, and
energy dynamics of terrestrial land surfaces (Longo, 2014;
Medvigy et al., 2009; Moorcroft et al., 2001) to describe
the coupled water, carbon, and energy dynamics of het-
erogeneous landscapes (Hurtt et al., 2013; Medvigy et al.,
2009; Moorcroft et al., 2001). ED2’s ability to incorporate
sub-grid-scale ecosystem heterogeneity arising from land-
use change makes the model suited for investigating how
the combined impacts of changes in climate, atmospheric
carbon dioxide concentrations, and land cover affect terres-
trial ecosystems. For example, ED2 was successfully used
to simulate the carbon flux dynamics in the North American
continent (Hurtt et al., 2002; Albani et al., 2006) and to as-
sess the impacts on Amazonian ecosystems of changes in cli-
mate, atmospheric carbon dioxide, and land use (Zhang et al.,
2015). Moreover, ED2, coupled with a regional atmospheric
circulation component, has also been successfully applied to
assess the impacts of deforestation on the Amazonian cli-
mate (Knox et al., 2015; Swann et al., 2015). The aforemen-
tioned studies were not aimed at assessing hydrological im-
plications of changes in land use and climate. These works
demonstrated the validity of ED2 for assessing impacts of
global and regional changes on ecosystem function and built
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Figure 1. Schematic of the enthalpy uxes (all arrows) and water uxes (all but solid black arrows) that are solved in ED2. The schematic is
based on Walko et al. (2000) and Medvigy et al. (2009). (Figure courtesy of Marcos Longo.)

the foundations for an integrated tool aimed at analyzing hy-the implications of those changes are for water and land re-
drological implications. sources management.

In this technical note, we describe the integration of ED2 The identi ed research areas are in line with key problems
with a hydrological routing scheme. The hydrological rout- raised in the literature, focusing on the importance of large-
ing scheme chosen was adapted from the MGB-IPH (Col-scale modeling and remote sensing to Il knowledge gaps in
lischonn et al., 2007). This exercise aims to calculate thewater resources and hydrological dynamics (Alsdorf et al.,
lateral propagation and attenuation of the surface and sub2007; Prigent et al., 2007). The product obtained from this
surface runoff resulting from the vertical balance calcula-exercise was tested in the Tapajos Basin, a large river system
tions in order to simulate daily river ows through a large in the southeastern Amazon, Brazil.
river basin. The advantage of the proposed model is its abil-
ity to predict the sensitivity of river ows to global and re-
gional environmental changes such as climate and land-us@ Ecosystem Demography (ED2) model

changes. The new product combines the advantages of bio- . o ) .
. ED2 is a terrestrial biosphere simulation model capable of

sphere and hydrological models, bringing together global-, ) X i ) me
regional-, and local-scale hydrological dynamics in a single'€Presenting biological and physical processes driving the
’ dynamics of ecosystems as a function of climate and soil

modeling framework. The resulting model is intended to be _ : . p
used in future studies as a computational tool to explore roperties. Rather than using a conventional “ecosystem as
ig-leaf” assumption, ED2 is formulated at the scale of func-

variety of research questions. In particular, it could be used’ | and £ ol E ke d
to analyze how current and future climate and land cover af—_t'ona and age groups of plants. Ecosystem-scale dynam-

fect water availability in river systems; how land-use-driven 'Ci_ar?d uxzs are cr;alculated thrqugbh r? spalmfg rE)rocedure
changes can in uence the water availability for human activ- WHich reproduces the macroscopic behavior of the ecosys-

ities (hydropower, food production, urban supply); and whatt€m within each cl|matolo_g|cal grid cell. It simulates ecosys-
tem structure and dynamics as well as the corresponding car-

bon, energy, and water uxes (Fig. 1; Hurtt et al., 2013; Med-
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Figure 4. (a) Organization of the Tapajos Basin into seven sub-basins: Upper Juruena (UJ); Lower Juruena (LJ); Upper Teles Pires (UTP);
Lower Teles Pires (LTP); Jamanxim (JA); Upper Tapajos (UT); and Lower Tapajos((yTED2CR represents the domain in grid cells with
0.5 resolution ( 55km). The black segments indicate the ow accumulation network.

Soils vary from those typically seen in the Brazilian shield ED2 model was forced using reconstructed climate (Shef eld
in the south of the basin to alluvial sediments in the north.et al., 2006) and land-use/land-cover data (Hurtt et al., 2006;
Land use, almost completely represented by primary foresSoares-Filho et al., 2006) at $patial resolution. The orig-
until the 1970s, was radically changed in recent decades. Asal meteorological dataset has a 3h temporal resolution,
estimated from the land-use/land-cover dataset used in thig’hich was downscaled to an hourly resolution, as described
study (Hurtt et al., 2006), in the late 2000s only about 56 %in Zhang et al. (2015). In this technical note, we describe
of the basin (270 000 kf was covered by the original veg- the calibration of the ow-routing component of EGR.
etation cover. Large parts of the basin lying in the territory The parameterization of the ED2 terrestrial biosphere model
of Mato Grosso were cleared to make room for agriculturalwas developed and evaluated independently using eddy- ux
and livestock production, while vast areas around the bortower observations of carbon, water, and energy uxes and
der between the state of Para and Mato Grosso were clearddrest inventory observations of above-ground biomass dy-
for cattle production. The northern portion of the basin is namics. Further details are available in Zhang et al. (2015)
largely protected by natural parks or indigenous lands, butand Longo (2014).

signi cant deforestation hotspots could be identi ed around

the cities of Santarém and Itaituba and along the main transeD2CR model calibration

portation routes (Fig. 3c). For a more detailed description of

the basin's physical characteristics and historical analysis offhe EDTCR model was manually calibrated using gauge ob-
trends in deforestation, precipitation, and discharge, we refegaryations (ANA, 2016; Observation Service SO HYBAM,
the reader to Arias et al. (2017) and Farinosi et al. (2017). 2016) spanning a period of 17 years from 1976 to 1992 (the
For calibration purposes, the basin was divided into severheriod 1970-1975 was not considered in order to avoid sim-
sub-basins, each of them with a corresponding gauge fo[ation initiation effects) through a two-step procedure, as
which historical daily river ow observations were available highlighted in Fig. 2. The rst step is partitioning the ows
(Fig. 4a). The domain was gridded with a spatial resolutionfrom the two reservoirs (surface and subsurface) of the ED2
of 0.5 by 0.5, roughly corresponding to 55km by 55km. pigsphere model into the three reservoirs (surface, intermedi-
Simulations were carried out for the period 1970-2008. Thegte, pase) of the EOZR routed biosphere model (parameters
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al., 2004). We believe that the error is arising from the com-
plexities associated with deep soils present in the headwaters
of the Tapajés Basin. In particular, in the model application
developed, soil layers are represented to a depth of 6 m (Ta-
ble 1), which might be too shallow to realistically represent
the conditions in the headwaters of the basin. The importance
of groundwater is also evident from the calibration of the res-
idence time parameter of the subsurface water flow: as shown
in Fig. 7, in fact, especially in the headwaters, even small
variations in the CB parameter greatly affect the model per-
formance (specifically quantified with NSE in Fig. 7). The
combined effect of groundwater interactions and spatial res-
olution is more evident in the upstream sub-basins because of
the greater marginal contribution of baseflow in these areas.
Surface flow accumulation, in fact, is lower in the headwa-
ters. Therefore, in relative terms, the role of baseflow is more
relevant in this portion of any basin. Further downstream, the
effect of groundwater interactions and spatial resolution is,
at least in part, masked by the larger rainfall-runoff con-
tribution and the overall flow accumulation from the up-
stream sub-basins. Other recent hydrological simulations of
the Tapajos have obtained higher accuracy (e.g., Mohor et
al., 2015; Collischonn et al., 2008; Coe et al., 2008); how-
ever, these simulations were set up discretizing the basin into
a finer spatial resolution grid (9 to 20km vs. ~55km grid
cells) and using hydrological tools able to reproduce highly
detailed hydrodynamic characteristics of complex river sys-
tems (i.e., floodplain, lakes, wetlands, backwater effects) that
are out of the scope of the tool presented in this study. The
advantage of the ED2+4-R model is the ability to study the
sensitivity of the river flows to global and regional changes
as computed by traditional terrestrial biosphere models, but
adding a more detailed hydrological feature with respect to a
very simplistic- or no-river representation. The coarse spatial
resolution of the global datasets used as input for ED2+R is,
however, a limiting factor. Higher-resolution climatological
data, vegetation, and land-use datasets, which would allow
a finer resolution of the hydrological grid, are expected to
improve the performance of the model by providing more
detailed hydrological processes. On the other hand, a finer
spatial resolution of the hydrological grid would also require
a more detailed representation of the subsurface water in the
model. In general, the tool can be used to study how differ-
ent hydrological systems are being affected by changes in
climate forcing and changes in ecosystem composition and
structure arising from the combination of changing climate,
rising atmospheric carbon dioxide, and land-use transforma-
tion. Additionally, ED2+R could potentially bridge one of
the missing gaps for diagnosing and assessing feedback be-
tween atmosphere and biosphere with inland surface waters
being represented as a dynamic system.
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7 Conclusion

In this technical note, we present the integration of the terres-
trial biosphere model Ecosystem Demography 2 (ED2) with
the Muskingum—Cunge routing scheme. We tested the inte-
grated model (ED2+R) in the Tapajés River basin, a large
tributary of the Amazon in Brazil, for the period 1970-2008.
The results showed that the integration of a biosphere model
with a routing scheme improves the ability of the land surface
simulation to reproduce the hydrological and river flow dy-
namics at the basin scale. The main limitations highlighted in
this case study were linked to the relatively coarse spatial res-
olution of the model and the rough representation of subsur-
face water flow typical of these kinds of models. Moreover,
the terrestrial biosphere model ED2 and the routing scheme
are presented here in a one-way integration. The full cou-
pling of the routing scheme and ED2 could further improve
the tool’s ability to reproduce the water balance considering
flooded ecosystems, a relevant feature in the simulation of
environments like the tropical forest, where local evapotran-
spiration plays a primary role in the specific ecosystem’s dy-
namics. In this first integration, our goal was to give the ter-
restrial biosphere model the ability to reproduce river flows
through a routing scheme. With a fully coupled (i.e., two-
way) integration, the model would be able to determine the
grid cells that are likely to be saturated and use this infor-
mation for the modeling of the ecosystem’s dynamics. For
instance, this could determine the increase of the mortality
rate of plants that are sensitive to inundation. An additional
limitation of the model could be identified in its inability to
reproduce highly detailed hydrological dynamics of complex
river systems (as, for instance, floodplain hydraulic features
or backwater effects). However, such a detailed hydrologi-
cal complexity was out of the scope of this study. Future ef-
forts will address the highlighted limitations, while upcom-
ing studies will use ED2+R to understand historical changes
and future projections of the impacts of climate change and
deforestation on the Amazon’s water resources.

Data availability. Meteorological forcing data are derived from
Sheffield et al. (2006) - https://doi.org/10.1175/JCLI3790.1;
land use data are derived from Hurtt et al. (2006) —
https://doi.org/10.1111/j.1365-2486.2006.01150.x; topographic
data are derived from the Shuttle Radar Topography Mission
(SRTM) 90m resolution (USGS, 2016); soil map is derived
from Quesada et al. (2010) — https://doi.org/10.5194/bg-7-
1515-2010 — and IGBP-DIS global soil data (Global Soil Data
Task, 2014) - https://doi.org/10.3334/ORNLDAAC/565; geo-
morphological relations are obtained from Coe et al. (2008) —
https://doi.org/10.1002/hyp.6850; streamflow observations are
obtained from Observation Service SO HYBAM (2016) and
ANA (2016).
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